Версия сайта для слабовидящих

Сила Ампера и Сила Лренца

Сила Ампера

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

  • Сила Ампера — это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F:

пропорционален длине проводника l, находящегося в магнитном поле;
пропорционален модулю индукции магнитного поля B;
пропорционален силу тока в проводнике I;
зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля LaTeX: ~\vec B.

Тогда:

модуль силы Ампера равен произведению модуля индукции магнитного поля B, в котором находится проводник с током, длины этого проводника l, силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля

LaTeX: ~F_A = I \cdot B \cdot l \cdot \sin \alpha ,

  • Этой формулой можно пользоваться:
    если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;
    если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля (LaTeX: ~\vec B) входил в ладонь, четыре вытянутых пальца указывали направление тока (I), тогда отогнутый на 90° большой палец укажет направление силы Ампера (LaTeX: ~\vec F_A) (рис. 1, а, б).

Рис. 1

Поскольку величина B∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной проводнику с током, LaTeX: ~\vec B_{\perp} (рис. 2), то ориентацию ладони можно определять именно этой компонентой — перпендикулярная составляющая к поверхности проводника должна входить в открытую ладонь левой руки.

Рис. 2

Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

Силы, действующие на проводник с током в магнитном поле, широко используются в технике. Электродвигатели и генераторы, устройства для записи звука в магнитофонах, телефоны и микрофоны — во всех этих и во множестве других приборов и устройств используется взаимодействие токов, токов и магнитов и т.д.

Сила Лоренца

Выражение для силы, с которой магнитное поле действует на движущийся заряд, впервые получил голландский физик Хендрик Антон Лоренц (1895 г.). В его честь эта сила называется силой Лоренца.

  • Сила Лоренца — это сила, с которой магнитное поле действует на движущуюся в нем заряженную частицу.

Модуль силы Лоренца равен произведению модуля индукции магнитного поля LaTeX: ~\vec B, в котором находится заряженная частица, модуля заряда q этой частицы, ее скорости υ и синуса угла между направлениями скорости и вектора индукции магнитного поля

LaTeX: ~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha.

Для определения направления силы Лоренца применяют правило левой руки: если левую руку расположить так, чтобы вектор индукции магнитного поля (LaTeX: ~\vec B) входил в ладонь, четыре вытянутых пальца указывали направления скорости движения положительно заряженной частицы (LaTeX: ~\vec \upsilon), тогда отогнутый на 90° большой палец укажет направление силы Лоренца (LaTeX: ~\vec F_L) (рис. 3, а). Для отрицательной частицы четыре вытянутых пальца направляют против скорости движения частицы (рис. 3, б).

Рис. 3

Поскольку величина B∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной скорости заряженной частицы, LaTeX: ~\vec B_{\perp}, то ориентацию ладони можно определять именно этой компонентой — перпендикулярная составляющая к скорости заряженной частицы должна входить в открытую ладонь левой руки.

Так как сила Лоренца перпендикулярна вектору скорости частицы, то она не может изменить значение скорости, а изменяет только ее направление и, следовательно, не совершает работы.

 

Движение заряженной частицы в магнитном поле

1. Если скорость υ заряженной частицы массой m направлена вдоль вектора индукции магнитного поля, то частица будет двигаться по прямой с постоянной скоростью (сила Лоренца FL = 0, т.к. α = 0°) (рис. 4, а).

Рис. 4

2. Если скорость υ заряженной частицы массой m перпендикулярна вектору индукции магнитного поля, то частица будет двигаться по окружности радиуса R, плоскость которой перпендикулярна линиям индукции (рис. 4, б). Тогда 2-ой закон Ньютона можно записать в следующем виде:

LaTeX: ~m \cdot a_c = F_L ,

где LaTeX: ~a_c = \frac{\upsilon^2}{R} , LaTeX: ~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha , α = 90°, т.к. скорость частицы перпендикулярна вектору магнитной индукции.

Тогда

LaTeX: ~\frac{m \cdot \upsilon^2}{R} = q \cdot B \cdot \upsilon .

3. Если скорость υ заряженной частицы массой m направлена под углом α (0 < α < 90°) к вектору индукции магнитного поля, то частица будет двигаться по спирали радиуса R и шагом h (рис. 4, в).